Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1444: 111-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467976

RESUMO

Recently, considerable attention has been directed toward innate-like T cells (ITCs) and innate lymphoid cells (ILCs) owing to their indispensable contributions to immune responses, tissue homeostasis, and inflammation. Innate-like T cells include NKT cells, MAIT cells, and γδ T cells, whereas ILCs include NK cells, type 1 ILCs (ILC1s), type 2 ILCs (ILC2s), and type 3 ILCs (ILC3s). Many of these ITCs and ILCs are distributed to specific tissues and remain tissue-resident, while others, such as NK cells and some γδ T cells, circulate through the bloodstream. Nevertheless, recent research has shed light on novel subsets of innate immune cells that exhibit characteristics intermediate between tissue-resident and circulating states under normal and pathological conditions. The local microenvironment frequently influences the development, distribution, and function of these innate immune cells. This review aims to consolidate the current knowledge on the functional heterogeneity of ITCs and ILCs, shaped by local environmental cues, with particular emphasis on IL-15, which governs the activities of the innate immune cells involved in type 1 immune responses.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Células Matadoras Naturais , Inflamação
2.
Cell Rep ; 42(9): 113127, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729919

RESUMO

Natural killer (NK) cells are innate immune cells critical for protective immune responses against infection and cancer. Although NK cells differentiate in the bone marrow (BM) in an interleukin-15 (IL-15)-dependent manner, the cellular source of IL-15 remains elusive. Using NK cell reporter mice, we show that NK cells are localized in the BM in scattered and clustered manners. NK cell clusters overlap with monocyte and dendritic cell accumulations, whereas scattered NK cells require CXCR4 signaling. Using cell-specific IL-15-deficient mice, we show that hematopoietic cells, but not stromal cells, support NK cell development in the BM through IL-15. In particular, IL-15 produced by monocytes and dendritic cells appears to contribute to NK cell development. These results demonstrate that hematopoietic cells are the IL-15 niche for NK cell development in the BM and that BM NK cells are present in scattered and clustered compartments by different mechanisms, suggesting their distinct functions in the immune response.


Assuntos
Medula Óssea , Interleucina-15 , Camundongos , Animais , Células da Medula Óssea , Diferenciação Celular , Células Matadoras Naturais
3.
Proc Natl Acad Sci U S A ; 120(36): e2215941120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639581

RESUMO

Group 2 innate lymphoid cells (ILC2s) are critical for the immune response against parasite infection and tissue homeostasis and involved in the pathogenesis of allergy and inflammatory diseases. Although multiple molecules positively regulating ILC2 development and activation have been extensively investigated, the factors limiting their population size and response remain poorly studied. Here, we found that CD45, a membrane-bound tyrosine phosphatase essential for T cell development, negatively regulated ILC2s in a cell-intrinsic manner. ILC2s in CD45-deficient mice exhibited enhanced proliferation and maturation in the bone marrow and hyperactivated phenotypes in the lung with high glycolytic capacity. Furthermore, CD45 signaling suppressed the type 2 inflammatory response by lung ILC2s and alleviated airway inflammation and pulmonary fibrosis. Finally, the interaction with galectin-9 influenced CD45 signaling in ILC2s. These results demonstrate that CD45 is a cell-intrinsic negative regulator of ILC2s and prevents lung inflammation and fibrosis via ILC2s.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Fibrose Pulmonar/prevenção & controle , Imunidade Inata , Linfócitos , Inflamação , Transdução de Sinais
4.
Int Immunol ; 35(11): 513-530, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37493250

RESUMO

Interleukin-7 (IL-7) is a cytokine critical for the development and maintenance of group 2 innate lymphoid cells (ILC2s). ILC2s are resident in peripheral tissues such as the intestine and lung. However, whether IL-7 produced in the lung plays a role in the maintenance and function of lung ILC2s during airway inflammation remains unknown. IL-7 was expressed in bronchoalveolar epithelial cells and lymphatic endothelial cells (LECs). To investigate the role of local IL-7 in lung ILC2s, we generated two types of IL-7 conditional knockout (IL-7cKO) mice: Sftpc-Cre (SPC-Cre) IL-7cKO mice specific for bronchial epithelial cells and type 2 alveolar epithelial cells and Lyve1-Cre IL-7cKO mice specific for LECs. In steady state, ILC2s were located near airway epithelia, although lung ILC2s were unchanged in the two lines of IL-7cKO mice. In papain-induced airway inflammation dependent on innate immunity, lung ILC2s localized near bronchia via CCR4 expression, and eosinophil infiltration and type 2 cytokine production were reduced in SPC-Cre IL-7cKO mice. In contrast, in house dust mite (HDM)-induced airway inflammation dependent on adaptive immunity, lung ILC2s localized near lymphatic vessels via their CCR2 expression 2 weeks after the last challenge. Furthermore, lung ILC2s were decreased in Lyve1-Cre IL-7cKO mice in the HDM-induced inflammation because of decreased cell survival and proliferation. Finally, administration of anti-IL-7 antibody attenuated papain-induced inflammation by suppressing the activation of ILC2s. Thus, this study demonstrates that IL-7 produced by bronchoalveolar epithelial cells and LECs differentially controls the activation and maintenance of lung ILC2s, where they are localized in airway inflammation.


Assuntos
Imunidade Inata , Interleucina-7 , Camundongos , Animais , Células Endoteliais/metabolismo , Papaína , Linfócitos , Pulmão , Imunidade Adaptativa , Inflamação , Citocinas/metabolismo , Interleucina-33
5.
Elife ; 122023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37352115

RESUMO

Group 1 innate lymphoid cells (G1-ILCs), including circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s), are innate immune sentinels critical for responses against infection and cancer. In contrast to relatively uniform NK cells through the body, diverse ILC1 subsets have been characterized across and within tissues in mice, but their developmental and functional heterogeneity remain unsolved. Here, using multimodal in vivo approaches including fate-mapping and targeting of the interleukin 15 (IL-15)-producing microenvironment, we demonstrate that liver parenchymal niches support the development of a cytotoxic ILC1 subset lacking IL-7 receptor (7 R- ILC1s). During ontogeny, fetal liver (FL) G1-ILCs arise perivascularly and then differentiate into 7 R- ILC1s within sinusoids. Hepatocyte-derived IL-15 supports parenchymal development of FL G1-ILCs to maintain adult pool of 7 R- ILC1s. IL-7R+ (7R+) ILC1s in the liver, candidate precursors for 7 R- ILC1s, are not essential for 7 R- ILC1 development in physiological conditions. Functionally, 7 R- ILC1s exhibit killing activity at steady state through granzyme B expression, which is underpinned by constitutive mTOR activity, unlike NK cells with exogenous stimulation-dependent cytotoxicity. Our study reveals the unique ontogeny and functions of liver-specific ILC1s, providing a detailed interpretation of ILC1 heterogeneity.


Assuntos
Interleucina-15 , Linfócitos , Camundongos , Animais , Linfócitos/metabolismo , Interleucina-15/metabolismo , Imunidade Inata , Receptores de Interleucina-7/metabolismo , Células Matadoras Naturais , Fígado
6.
Int Immunol ; 35(3): 147-155, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36480702

RESUMO

Group 1 innate lymphoid cells (G1-ILCs) are innate immune effectors critical for the response to intracellular pathogens and tumors. G1-ILCs comprise circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s). ILC1s mainly reside in barrier tissues and provide the initial sources of interferon-γ (IFN-γ) to prime the protecting responses against infections, which are followed by the response of recruited NK cells. Despite such distribution differences, whether local environmental factors influence the behavior of NK cells and ILC1s is unclear. Here, we show that the signaling of retinoic acid (RA), active metabolites of vitamin A, is essential for the maintenance of ILC1s in the periphery. Mice expressing RARα403, a truncated form of retinoic acid receptor α (RARα) that exerts dominant negative activity, in a lymphoid cell- or G1-ILC-specific manner showed remarkable reductions of peripheral ILC1s while NK cells were unaffected. Lymphoid cell-specific inhibition of RAR activity resulted in the reduction of PD-1+ ILC progenitors (ILCPs), but not of common lymphoid progenitors (CLPs), suggesting the impaired commitment and differentiation of ILC1s. Transcriptome analysis revealed that RARα403-expressing ILC1s exhibited impaired proliferative states and declined expression of effector molecules. Thus, our findings demonstrate that cell-intrinsic RA signaling is required for the homeostasis and the functionality of ILC1s, which may present RA as critical environmental cue targeting local type 1 immunity against infection and cancer.


Assuntos
Imunidade Inata , Linfócitos , Animais , Camundongos , Regulação da Expressão Gênica , Interferon gama/metabolismo , Células Matadoras Naturais , Receptores do Ácido Retinoico/metabolismo
7.
Sci Immunol ; 7(76): eabj8760, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36269840

RESUMO

Invariant natural killer T (iNKT) cells are a group of innate-like T lymphocytes that recognize lipid antigens. They are supposed to be tissue resident and important for systemic and local immune regulation. To investigate the heterogeneity of iNKT cells, we recharacterized iNKT cells in the thymus and peripheral tissues. iNKT cells in the thymus were divided into three subpopulations by the expression of the natural killer cell receptor CD244 and the chemokine receptor CXCR6 and designated as C0 (CD244-CXCR6-), C1 (CD244-CXCR6+), or C2 (CD244+CXCR6+) iNKT cells. The development and maturation of C2 iNKT cells from C0 iNKT cells strictly depended on IL-15 produced by thymic epithelial cells. C2 iNKT cells expressed high levels of IFN-γ and granzymes and exhibited more NK cell-like features, whereas C1 iNKT cells showed more T cell-like characteristics. C2 iNKT cells were influenced by the microbiome and aging and suppressed the expression of the autoimmune regulator AIRE in the thymus. In peripheral tissues, C2 iNKT cells were circulating that were distinct from conventional tissue-resident C1 iNKT cells. Functionally, C2 iNKT cells protected mice from the tumor metastasis of melanoma cells by enhancing antitumor immunity and promoted antiviral immune responses against influenza virus infection. Furthermore, we identified human CD244+CXCR6+ iNKT cells with high cytotoxic properties as a counterpart of mouse C2 iNKT cells. Thus, this study reveals a circulating subset of iNKT cells with NK cell-like properties distinct from conventional tissue-resident iNKT cells.


Assuntos
Células T Matadoras Naturais , Camundongos , Humanos , Animais , Células T Matadoras Naturais/metabolismo , Células T Matadoras Naturais/patologia , Interleucina-15 , Antivirais , Granzimas , Receptores de Células Matadoras Naturais , Receptores de Quimiocinas/metabolismo , Lipídeos
8.
Curr Top Microbiol Immunol ; 434: 83-101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34850283

RESUMO

Lymphoid organs consist of immune cells and stromal cells. The stromal cells produce various cytokines that support the development, maintenance, and response of the immune cells. IL-7 and IL-15 are the major cytokines produced by stromal cells and are essential for the development and maintenance of lymphocytes and innate lymphoid cells (ILCs). In addition, IL-7 is indispensable for the organogenesis of lymphoid organs. However, because the amount of these two cytokines is relatively low, it has been difficult to directly detect their expression. Recently, several groups succeeded in establishing IL-7 and IL-15 reporter mouse lines. As expected, IL-7 and IL-15 were detected in mesenchymal stromal cells in the bone marrow and lymph nodes and in epithelial cells in the thymus. Furthermore, IL-7 and IL-15 were differentially expressed in lymphatic endothelial cells and blood endothelial cells, respectively. In addition to their expression, many groups have analyzed the local functions of IL-7 and IL-15 by using cell-type-specific knockout mice. From these experiments, CXCL12-expressing mesenchymal stromal cells were identified as the major niche for early B cell precursors. Single-cell RNA sequencing (scRNA-seq) analysis has revealed different subpopulations of stromal cells in the lymphoid organs, including those that express both IL-7 and IL-15. Future research is still needed to elucidate which stromal cells serve as the niche for the early precursors of ILCs and NK cells in the bone marrow.


Assuntos
Interleucina-15 , Interleucina-7 , Animais , Células Endoteliais , Imunidade Inata , Interleucina-15/genética , Interleucina-7/genética , Células Matadoras Naturais , Camundongos
9.
Commun Biol ; 4(1): 342, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727664

RESUMO

Severe infection often causes a septic cytokine storm followed by immune exhaustion/paralysis. Not surprisingly, many pathogens are equipped with various anti-inflammatory mechanisms. Such mechanisms might be leveraged clinically to control septic cytokine storms. Here we show that N-glycan from pathogenic C. albicans ameliorates mouse sepsis through immunosuppressive cytokine IL-10. In a sepsis model using lipopolysaccharide (LPS), injection of the N-glycan upregulated serum IL-10, and suppressed pro-inflammatory IL-1ß, TNF-α and IFN-γ. The N-glycan also improved the survival of mice challenged by LPS. Analyses of structurally defined N-glycans from several yeast strains revealed that the mannose core is key to the upregulation of IL-10. Knocking out the C-type lectin Dectin-2 abrogated the N-glycan-mediated IL-10 augmentation. Furthermore, C. albicans N-glycan ameliorated immune exhaustion/immune paralysis after acute inflammation. Our results suggest a strategy where the immunosuppressive mechanism of one pathogen can be applied to attenuate a severe inflammation/cytokine storm caused by another pathogen.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Parede Celular/imunologia , Citocinas/imunologia , Glicoproteínas de Membrana/imunologia , Polissacarídeos/imunologia , Sepse/imunologia , Animais , Candida albicans/metabolismo , Candidíase/metabolismo , Candidíase/microbiologia , Parede Celular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polissacarídeos/metabolismo , Sepse/metabolismo , Sepse/microbiologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Sci Rep ; 10(1): 2569, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054990

RESUMO

Modern society characterized by a 24/7 lifestyle leads to misalignment between environmental cycles and endogenous circadian rhythms. Persisting circadian misalignment leads to deleterious effects on health and healthspan. However, the underlying mechanism remains not fully understood. Here, we subjected adult, wild-type mice to distinct chronic jet-lag paradigms, which showed that long-term circadian misalignment induced significant early mortality. Non-biased RNA sequencing analysis using liver and kidney showed marked activation of gene regulatory pathways associated with the immune system and immune disease in both organs. In accordance, we observed enhanced steatohepatitis with infiltration of inflammatory cells. The investigation of senescence-associated immune cell subsets from the spleens and mesenteric lymph nodes revealed an increase in PD-1+CD44high CD4 T cells as well as CD95+GL7+ germinal center B cells, indicating that the long-term circadian misalignment exacerbates immune senescence and consequent chronic inflammation. Our results underscore immune homeostasis as a pivotal interventional target against clock-related disorders.


Assuntos
Senescência Celular/imunologia , Ritmo Circadiano/imunologia , Síndrome do Jet Lag/imunologia , Longevidade/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Senescência Celular/genética , Ritmo Circadiano/genética , Modelos Animais de Doenças , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Inflamação/imunologia , Inflamação/fisiopatologia , Síndrome do Jet Lag/fisiopatologia , Longevidade/genética , Camundongos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Análise de Sequência de RNA , Linfócitos T/imunologia , Linfócitos T/patologia
11.
J Immunol ; 204(4): 844-857, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31924648

RESUMO

T cell development and homeostasis requires IL-7R α-chain (IL-7Rα) signaling. Tyrosine Y449 of the IL-7Rα is essential to activate STAT5 and PI3K, whereas PI3K recruitment requires IL-7Rα methionine M452. How IL-7Rα activates and regulates both signaling pathways differentially remains unclear. To characterize differential signaling, we established two lines of IL-7Rα mutant mice: IL-7R-Y449F mice and IL-7R-M452L mice. IL-7R-Y449F mice showed decreased PI3K and STAT5 signals, whereas IL-7R-M452L mice showed decreased PI3K but significantly increased STAT5 signaling, owing to a competition between PI3K and STAT5 signaling through Y449 of IL-7Rα. The number of T, B, and mature innate lymphoid cells were markedly reduced in IL-7R-Y449F mice, whereas IL-7R-M452L mice showed impaired early T cell development and memory precursor effector T cell maintenance with the downregulation of transcription factor T cell factor-1. Peripheral T cell numbers increased in IL-7R-M452L mice with enhanced survival and homeostatic proliferation. Furthermore, although wild type and IL-7R-Y449F mice showed comparable Th1/Th2 differentiation, IL-7R-M452L mice exhibited impaired Th17 differentiation. We conclude that PI3K competes with STAT5 under IL-7Rα and maintains an appropriate signal balance for modulating T cell development and homeostasis. To our knowledge, this study provides a new insight into complex regulation of IL-7Rα signaling, which supports immune development and responses.


Assuntos
Homeostase/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Receptores de Interleucina-7/imunologia , Fator de Transcrição STAT5/imunologia , Linfócitos T/imunologia , Animais , Diferenciação Celular/imunologia , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Interleucina-7/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...